博客
关于我
基于Matlab的形态学图像处理学习笔记
阅读量:685 次
发布时间:2019-03-17

本文共 1071 字,大约阅读时间需要 3 分钟。

形态学图像处理是一门结合数学理论与实际应用的技术,广泛应用于图像处理和模式识别领域。以下是一些关于形态学图像处理的基础知识与实践,主要包括基本概念、膨胀与腐蚀操作、组合形态学运算等内容。

12.1 基本形态学运算

数学形态学的核心在于研究图像的形态特征,通过设计特定形状的结构元素进行图像变换。结构元素是膨胀和腐蚀运算的基础,通常以二维矩阵形式呈现,1代表有效区域,0代表无效区域。

结构元素

结构元素的形状可以是矩形、线形、球形等。在MATLAB中,可以通过strel函数创建任意大小和形状的结构元素。例如:

se1 = strel('square', 3); % 3x3的矩形结构元素se2 = strel('line', 10, 45); % 10x1的线形结构元素,角度为45度

这些结构元素在后续的形态学运算中将发挥重要作用。

膨胀与腐蚀

  • 膨胀:将与物体接触的背景点合并到物体中,使边界向外扩张。
  • 腐蚀:将与物体接触的部分去除,使边界向内收缩。

膨胀和腐蚀是形态学运算中的基本操作,常用于图像边缘检测和不连通区域的去除。

12.2 组合形态学运算

形态学运算不仅限于单一的膨胀或腐蚀,还可以通过组合操作实现更复杂的效果。

高帽滤波与低帽滤波

  • 高帽滤波:通过减去形态学开运算的结果,保留图像的高频信息,增强对比度。
  • 低帽滤波:通过减去形态学闭运算的结果,提取图像的低频信息,突出图像边缘。

图像填充

在MATLAB中,可以使用imfill函数对二值图像进行填充操作。例如:

J = imfill(J, 'holes'); % 填充图像中的空洞

最大值与最小值

通过imregionalmaximregionalmin函数,可以获取图像中所有局部极大值和极小值。

12.3 二值图像的形态学操作

二值图像的形态学操作尤为丰富,包括极限腐蚀、查表操作、标记、对象选择等。

极限腐蚀

使用bwulterode函数对二值图像进行极限腐蚀,使每个对象最后变为一个像素点。

查表操作

通过makelutapplylut函数,可以在二值图像中执行查表操作,适用于2x2或3x3邻域的操作。

标记与选择

  • 标记:使用bwlabel函数对连通区域进行标记。
  • 选择:使用bwselect函数在二值图像中选择特定对象。

12.4 本章小结

本章介绍了形态学图像处理的基础知识,包括基本运算、组合运算以及二值图像的应用。通过膨胀、腐蚀、开闭运算等操作,可以对图像进行边缘检测、空洞填充等处理。形态学技术在图像处理中的应用广泛,是理解图像特征的一种有效方法。

转载地址:http://ufuhz.baihongyu.com/

你可能感兴趣的文章
Nginx Location配置总结
查看>>
Nginx 反向代理解决跨域问题
查看>>
nginx 后端获取真实ip
查看>>
Nginx 学习总结(17)—— 8 个免费开源 Nginx 管理系统,轻松管理 Nginx 站点配置
查看>>
Nginx 我们必须知道的那些事
查看>>
oauth2-shiro 添加 redis 实现版本
查看>>
OAuth2.0_授权服务配置_Spring Security OAuth2.0认证授权---springcloud工作笔记140
查看>>
Objective-C实现A-Star算法(附完整源码)
查看>>
Objective-C实现atoi函数功能(附完整源码)
查看>>
Objective-C实现base64加密和base64解密算法(附完整源码)
查看>>
Objective-C实现base85 编码算法(附完整源码)
查看>>
Objective-C实现basic graphs基本图算法(附完整源码)
查看>>
Objective-C实现BCC校验计算(附完整源码)
查看>>
Objective-C实现bead sort珠排序算法(附完整源码)
查看>>
Objective-C实现BeadSort珠排序算法(附完整源码)
查看>>
Objective-C实现bellman ford贝尔曼福特算法(附完整源码)
查看>>
Objective-C实现bellman-ford贝尔曼-福特算法(附完整源码)
查看>>
Objective-C实现bellman-ford贝尔曼-福特算法(附完整源码)
查看>>
Objective-C实现BellmanFord贝尔曼-福特算法(附完整源码)
查看>>
Objective-C实现BF算法 (附完整源码)
查看>>